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LIQUID CRYSTALS, 1993, VOL. 14, No. 1, 169-184 

Invited Lecture 

Rotational dynamics and conformational kinetics 
in liquid crystals 

by A. FERRARINI, A. POLIMENO and P. L. NORDIO* 
Dipartimento di Chimica Fisica, Universita degli Studi di Padova, 

2, Via Loredan, 35131 Padova, Italy 

Two particular aspects of solute dynamics in ordered media are analysed on the 
basis of the solution of multivariate diffusion equations: the effects of the solvation 
dynamics on the rotational motions of dipolar probes in liquid crystal solvents, and 
the alteration of reaction pathways in isomerization kinetics caused by the solvent 
order. The introduction of a suitable solvent coordinate allows the interpretation of 
high frequency contributions in the rotational correlation functions observed 
by spectroscopic techniques, namely dielectric dispersion, IR and Raman 
spectroscopy, ESR lineshapes and optical Kerr effect. For molecular systems 
undergoing conformational changes, a method is offered to evaluate the modific- 
ation of the torsional barriers resulting from the anisotropic torques modulated by 
the molecular shape changes along the reaction coordinate. 

1. Introduction 
The dynamical behaviour of molecules in liquid crystals is almost invariably 

described by means of stochastic equations where the environment enters as a 
continuous medium, exerting a frictional drag and the forces and torques responsible for 
the mesomorphic ordering [ 11. The frictional effects are related to the macroscopic 
viscosity properties of the mesophase, while torques and forces are expressed in terms 
of anisotropic pseudo-potentials, whose expansion coefficients can be in principle 
determined by the experimental order parameters which characterize the static 
properties of the liquid crystal phase. In practice, complete information on the order 
parameters is not available, and so we must resort to maximum information entropy 
methods [2], or molecular field theories which provide a mean-field potential as a 
statistical average of pairwise interactions [3-51. Alternatively, the anisotropic 
potential can be evaluated from models which account for the disturbance of the 
solvent order caused by solutes of particular shape [6,7]. 

With these ingredients, the rotational and translational dynamics of rigid probe 
molecules dissolved in liquid crystals is rather well-understood. Thus, ESR lineshapes 
[8], selective NMR TI relaxation [9], or fluorescence depolarization experiments on 
solutes [ 1, lo] have been satisfactorily interpreted. Under some simplifying assump- 
tions, the behaviour of the mesogen molecules themselves can also be rationalized [ 1 I]. 
Most mesogen molecules have flexible alkyl chains, and also the dynamical contri- 
butions of these internal motions can be taken into account, at a reasonable cost of 
computational effort [12,13]. 
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A. Ferrarini et al. 

In pure nematogens, NMR relaxation and dielectric dispersion data can be in 
general analysed quite easily, if in the latter case the monitoring electric field is taken 
parallel to the optical axis of the mesophase. With this geometry, reorientations of the 
molecular dipole component along the field direction require the passage over the 
barrier of the nematic potential, and so the dipole relaxation is hindered, and shifted to 
lower frequency with respect to the isotropic phase. Difficulties for the theoretical 
analysis arise in relation to the intriguing results obtained when the experimental 
techniques probe faster timescales, as in the case of dielectric dispersion with 
perpendicular alignment of the electric field [ 13-1 51, IR-Raman scattering spec- 
troscopy [16], neutron scattering [17] or optical Kerr effect (OKE) [18] experiments. 
In all these cases, motions faster than expected appear to be revealed; in fact, values as 
high as 10" for Dll in relatively viscous nematics are commonly reported. Motions 
faster than the typical values (108-1010) of the rotational diffusion may originate from 
librations within instantaneous solvent cages, specific couplings with solvent coordi- 
nates, or internal motions if flexible molecules are considered, and it is therefore 
important to identify the relevant motional process. 

Additional complications arise in the case of probe molecules undergoing 
conformational transitions [19]. This case is interesting because it provides a simple 
example of unimolecular reactions, and the theoretical description of the solvent effect 
on the kinetics can be very instructive. 

The anisotropic environment is expected to have a two-fold influence on the 
conformational kinetics of a dissolved probe: 

(1) an essentially static effect, the internal energy surface being altered by the 
mean-field potential; 

(2) a dynamical coupling of solvent and reactive coordinates, which determines the 
reaction pathway according to the different time scale [20,21]. 

With the aim of supplying a theoretical model able to provide answers, at a 
semiquantitative level, to all the questions posed above, we shall organize this paper as 
follows. In $2 we shall describe a multivariate diffusion equation, in which some 
relevant solvent variables are included. We shall choose as solvent variables the 
fluctuating components of the macroscopic polarization, as dictated by the polar 
nature of the mesogenic molecules that we shall consider. We will show that high 
frequency components in the molecular orientational correlation function naturally 
appear in this way. In 6 3 we shall consider the effect of the presence of the orientational 
mean-field potential on the conformational kinetics, and we shall discuss the role of 
specific solvent effects. 

2. The model of solvation dynamics 
The time evolution of the tumbling motion of a probe molecule in a liquid phase can 

be described when we are able to select the relevant set of dynamical coordinates which 
are likely to exhibit a relaxation behaviour in the time scale of the experimental 
observation. We shall consider a typical measure of dielectric relaxation for a dipolar 
fluid. The rotational coordinates (Euler angles a) for a single dipole are identified as the 
primary set of relevant coordinates. All other molecular degrees of freedom are 
supposed to be completely decoupled or too fast relaxing to effectively influence the 
time evolution of the dipole moment. Thus, vibrational degrees offreedom are excluded 
because they are too fast, and the translational ones are supposedly uncoupl;d, as is the 
case for cylindrical molecules in uniaxial phases. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
4
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Invited Lecture: Rotational and conformational dynamics in liquid crystals 171 

In order to take into account the polar nature of the fluid, we assume that the dipole 
reorients inside an Onsager cavity, and so a relevant collective polarization coordinate 
is assumed to be the randomly fluctuating reaction field X(t )  [22]. 

The time evolution of the conditional probability P(R,X,t) is taken as a 
Smoluchowski equation having the form [23] 

(a/at)P(R, x ,  t)  = - l=P(R, x ,  t), (1) 
where 

- f = A * DRP,,(R, X )  * IZIP,'(R, X) + (d/aX). D$,,(R, X) . (d/aX)P,'(R, X). (2) 
In this equation, M is the infinitesimal rotation operator, acting on the R sub-space and 
defined in the molecular frame, ( a / a X )  is the gradient operator acting on the X sub- 
space and defined in the laboratory frame. The Boltzmann distribution P,, (a, X )  is the 
form assumed by P(R, X ,  t )  for t+  co and is defined in terms of the potential energy 
function as 

Peq(R, =exp 1- v(n? X)/kBTl/(exp [- v(sz, X)/kBTl), (3) 
where the brackets denote an integral over all the states of the system; lastly, DR and D, 
are the diffusion tensor for the rotational and the solvent degrees of freedom, 
respectively. The potential energy for the overall system is given by the following 
expression [23] 

V(R, X) = V,(R)-p(R) * x ++x.  E2 * x .  (4) 
The first contribution is present only when a liquid-crystalline phase is considered. For 
a typical nematic, we assume the usual Maier-Saupe [3] mean field 

V,(R) = vP,P,(cos p), (5)  
where v is a strength parameter and P ,  is the order parameter. 

The second contribution defines the coupling between the molecular dipole and the 
polar environment, and we assume for it a classic dipole-field form. The dipole moment 
is written as 

P = PU(Q), (6) 
and for simplicity, in the following calculations the unitary vector u is assumed to point 
along the z axis of the molecular frame fixed on the probe. This choice does not affect 
the conclusions which can be drawn from the model, although it simplifies a little the 
algebraic calculations. 

The third term describes the potential energy for the fluctuating reaction field alone. 
The matrix 8' determines the fluctuation amplitudes, and it is taken diagonal in the 
laboratory frame of reference. 

2.1. Relation of dynamical parameters to  macroscopic properties 
The potential and diffusion tensors parameters which appear in the above 

expressions can be evaluated, at least qualitatively, from simple hydrodynamic and 
electrostatic considerations. Let us first recall the case of a spherical molecule in 
isotropic liquids [23], when the potential strength for the mean field parameter u is 
obviously set to zero. The diffusion tensor for the rotational motion is replaced by the 
scalar 

DR = l/TR, (7) 
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172 A. Ferrarini et al. 

where t, is the (unique) rotational decay time. The potential and diffusion parameters 
concerning the stochastic field are evaluated from the knowledge of the correlation 
function for X in the absence of coupling with the dipole probe 

which can be compared with the standard form derived on the basis of dielectric 
theories for the reaction field 

to obtain physical interpretations for the scalars Z2 and D,: 

DsE2 = kBT/ts. (1 1) 

In these expressions a, co and E ,  are the radius of the spherical Onsager cavity, and the 
static and optical dielectric constants, respectively. Finally, zs is proportional to the 
dielectric relaxation time tD 

2Em + 1 zs=- 
2t0+ 1 z D  

To conclude, we should remark that zD= 1/20,> and that information on the 
correlation function X(0) * X(t) is obtained from the knowledge of time-dependent 
Stokes shifts [22]. 

A simple way to generalize the previous formulas to anisotropic cases is to choose o 
different from zero and to substitute the scalars with tensors. Therefore, we shall 
assume the rotational diffusion tensor for the elongated mesogen molecule to be 
diagonal and axially symmetric in the molecular frame 

while the polarization diffusion and fluctuations tensors are taken diagonal in the 
laboratory frame with the Z axis coincident with the optical axis of the uniaxial 
mesophase: 

The perpendicular and parallel components of D, and E are simply obtained by 
expressions similar to equations (lo), (11) and (12), by substituting to, em with the 
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Invited Lecture: Rotational and conformational dynamics in liquid crystals 173 

principal components eb'. 1 1 )  and & 1 1 )  measured in uniaxial phases. Obviously, this is a 
very rough way of treating anisotropy, especially since we maintain a spherical form for 
the Onsager cavity and we neglect hydrodynamic interactions, although more 
sophisticated treatments are available [24,25]. However, we can see that even this 
simple model allows us to extract the important physical factors which determine the 
relaxation behaviour of the system. For instance, the coupling of the molecular dipole 
with the solvent reaction field provides naturally an additional retarding torque for the 
dipole reorientation, termed as dielectric friction [22,23]. 

Note that the definition of the order parameter is somewhat modified with respect 
to the usual one-body treatments, since we have to take into account the average over 
all the relevant coordinates of the system 

(16) 
fdRfdXP,(cos 8) exp [ - V(Q, X)/k,T] 

JdRfdX exp [ - V(Q, X)/k,T] 
P ,  = (P,(COS B)P,,) = 

The anisotropy in the tensor E has the effect of introducing an additional orienting 
term in the mean field potential, plus a stabilization energy term 

We are finally left with the following parameters: the energetics is defined by u (mean 
field potential), u,, and AEs, the dynamics is determined by the two rotational diffusion 
tensor components D:, Dl, and the two solvent relaxation times zi, T#. 

2.2. Dielectric relaxation in polar nematics 
We are interested in evaluating correlation functions for the dipole component 

relaxations, i.e. pz(0)pz(t) (relaxation of the dipole along the 2 axis of the lab frame) and 
px(0)pX(t) =py(0)py(t)  (relaxation of the dipole in the X Yplane of the lab frame). These 
are related to correlation functions of first rank Wigner functions in R [26]. 

The numerical calculations are performed by the following sequence of operations: 

symmetrization of the time evolution operator, which consists in making the 
operator f hermitean by the unitary transformation 

f = peq1/2fp1/2 eq 3 (19) 
the eigenvalues o f f  being the same as those o f f ;  
representation in matrix form of the symmetrized operator on a suitable 
orthonormal set of basis functions; 
representation of the observables (dipole components) in vectorial form on the 
same basis set; 
application of iterative algorithms, such as Lanczos, on the large sparse matrix 
obtained in step (1) with the initial vector given by step (2), in order to transform 
the matrix into tridiagonal form [27]; 
evaluation of the spectral densities (Fourier-Laplace transforms of the 
correlation functions) directly from the tridiagonal matrix as a continuous 
fraction, or selection of the most relevant eigenvalues (time decay constants) 
from a QR [27] diagonalization of the tridiagonal matrix. 
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174 A. Ferrarini et al. 

Details of the algebraic procedure are given elsewhere [27,28]. The basis functions 
have been taken as the direct product of normalized Wigner matrices in R and 
normalized Hermite functions in Xi, Cartesian component of the reaction field. The 
basis set can be written in bracket form as 

IJMK) = [(2J + 1)/8n2] 1/z9&*(R), 

Ini) = Hei,(Xi) exp (- X:/4)/(2n)’/4. (22) 

Having chosen the unitary vector u of the dipole moment along the z axis of the 
molecular frame, we need to compute the following correlation functions, already 
expressed in terms of the basis functions 

Gko(t) = G II(t) = ((100; OOO) P i g ,  exp (- ft)l(lO0; OOO)P:e), 
G:  o(t) = G,(t) = (( 1 10; 000) Piel exp ( - ft)l( 1 10; 00O)Pfg). 

(23) 

(24) 

The functions G II(t) and G,(t) allow us to describe relaxation experiments performed 
with the electric field parallel or perpendicular to the optical axis of the mesophase. It 
follows from the chosen probe geometry that only Di enters in determining the time 
decays of both GII(t) and G,(t). By analogy with equation (7) we shall continue to define 
a characteristic time tR= l/Di. 

For actual calculations we have made reference to the molecular system 4-n-heptyl- 
4-cyanobiphenyl(7CB) in the nematic phase, for which all the necessary dielectric data 
are available [29]. The static and optical dielectric constant measured with a field 
parallel to the director n are ~ j = 1 6 . 3  and &=3.1, respectively; if the field is 
perpendicular the measured values are 6;  = 5.9 and 6;  = 2-5. The reported dielectric 
relaxation times are tA - 32 ns and T; - 2 ns. 

The ratio Ef/Et is then evaluated to be 1.2, and so for this system the ratio Ivo/AE,( 
has a value of about 0.1. In terms of the rotational time tR the dielectric relaxation times 
calculated by means of one-body models [26] turn out to be q‘j - T, and rb - lot,, in 
agreement with the experimental values reported above. It follows from equation (12), 
modified by the inclusion of the suitable dielectric tensor components, that the solvent 
relaxation times are roughly given by tf - 05tA -0.52,, and t# - 0.22A N 22,. These 
estimates suggest that the dynamical effect of anisotropy, i.e. its influence on the 
diffusion time scale by means of dielectric friction, is likely to be more relevant than its 
static effects. This is in accordance with MD simulations [30] and NMR experiments 
[31] in which the aligning effect of dipolar forces in nematics is found negligible, when 
compared with steric interactions effects. For a typical nematic at 50°C one measures 
an order parameter of 0.6 which corresponds, in standard mean field theory, to a value 
of -v/k,T close to 5. Therefore we shall neglect the uo term because it is expected to be 
small compared with this value. 

The spectral densities relative to the correlation functions G(t) given in equations 
(23) and (24) have been computed for several sets of parameters, and one of the most 
significant results is shown in figure 1, in the form of a Cole-Cole plot, i.e. with the 
imaginary part L” versus the real part L’ of the Fourier-Laplace transform 

r m  2 
U 

L(w) = - J dt  exp ( - iwt) - G(t). (25) 
0 dt 
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L” 
8.50-1 

0.0 0.5 1 .Q 
8’ 

Figure 1. Cole-Cole plots for the correlation function of the molecular dipole components 
parallel (full line) and perpendicular (dotted line) to the director, calculated for the nematic 
phase of 7CB. Energetic and dynamical parameters are given in the text. 

5 10 
.t 

Figure 2. Semilogarithmic plot of correlation functions for the second rank Wigner compo- 
nents 9go (full line), 9fo (dashed line) and 9io (dotted line), calculated for the nematic 
phase of 7CB. 

We have taken the values zi/zR = 0.5, zi!zR = 2, and a stabilization energy AEs given 
by 2k,T Complete convergence at the fourth figure for all relevant eigenvalues is 
achieved for matrix dimensions of about 3000, the number of Lanczos steps required to 
efficiently tridiagonalize the matrix being always less than 50. The Cole-Cole plot for 
the first rank correlation functions shows a dramatic departure from simple 
monoexponential decay for the perpendicular component. The dominant decay time 
for the parallel component is still the eigenvalue related to the jump motion between 
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176 A. Ferrarini et al. 

the two minima of the orientational potential, while the decay of the perpendicular 
component results from the molecule diffusive librations within the minima, strongly 
intermixed with the solvent decay times. 

We see therefore that with relatively low values of the dipole stabilization energy, 
drastic flattening of the Cole-Cole plots is predicted only for dipole relaxation 
experiments with perpendicular arrangements of the electric field. These results are in 
complete agreement with the experimental observations [ 141, and since conform- 
ational motions of the alkyl chains are unable to account for so large effects [13], the 
shape of the Cole-Cole plots in nematics may be taken as a strong evidence of the 
existence of polarization fluctuations in these systems. 

Other experiments can also probe fast relaxing components resulting from the 
couplings with the solvent. Figure 2 displays the semilogarithmic plot of normalized 
time correlation functions of second rank Wigner components, relevant for the 
interpretation of Raman or OKE experiments, and the fast decay at short times is 
clearly exhibited. 

This dynamical behaviour may also be the origin of the frequency dependence of the 
diffusion tensor of spin probes monitored by ESR experiments, implying the existence 
of local torques [32] relaxing slowly with respect to the timescale of the solvent cages, 
which give rise to far infrared spectra, but still fast compared with the orientational 
tumbling. 

3. Effect of the nematic order on isomerization kinetics 
The exploitation of ordered media to alter the activation parameters and the kinetic 

pathways in chemical reactions has been pursued by several researchers, and the reader 
is referred to a review article by Weiss [33] for an exhaustive illustration of papers 
related to this argument. A number of papers have been devoted to the understanding 
of the solute-solvent interactions which influence unimolecular reactions in meso- 
phases. For a rotameric molecule which does not present polar character, we generally 
assume that the rate constants in isotropic phases depend essentially upon the internal 
torsional potential, the interactions with the solvent having only minor effects. This is 
no longer true in liquid crystal phases, where the molecules experience anisotropic 
torques of the order of magnitude of several k,T units, which tend to orient the various 
molecular moieties and can compete with the torsional potential in determining both 
the stable states and the interconversion rates. Evidence actually exists that solvent 
order can control conformational kinetics when extensive shape changes in the 
transition state are involved. 

Typical examples of simple systems whose conformational kinetics has been 
studied in ordered phases are provided by the biphenyl, 1,l'-binaphthyl (BN), and 
stilbene molecules. The case of the biphenyl isomerization has been extensively treated 
elsewhere [19], and only a few remarks shall be added here. The thermal racemization 
of BN, depicted in figure 3, has been experimentally investigated in a series of isotropic 
and nematic solvents [34]. On a qualitative ground, we expect the interconversion rate 
to increase in ordered phases, because the solvent order forces the molecule in the 
planar configuration, which corresponds to the transition state configuration. Since 
this configuration implies a higher ordering for both the BN molecule and the 
surrounding mesogen molecules, a relatively large decrease of the total entropy is also 
expected, in agreement with the observations. Lastly, the isomerization process of cis- 
stilbene is apparently a case in which the prediction of the effects of the nematic order 
is contradicted by the experiments [33]. 
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R-I-bBN S-(+)-BN 

Figure 3. Interconversion of the optical isomers of 1,l'-binaphthyl across the trans barrier. 

3.1. Orientational and torsional potential 
In order to describe the kinetics of isomerization for molecules in ordered phases, 

we need first a detailed knowledge of the potential that they experience. For a molecule 
with a single internal degree of freedom in a nematic uniaxial phase, such a potential 
can be written as V(Q, cp), where cp is the torsional angle and R are the Euler angles for 
the transformation from the laboratorv frame, with the Z axis along the mesophase 
director d, to a molecular reference system, fixed in one of the rigid subunits of the 
molecule. We start by writing the potential as 

V(52, cp) = V"'(cp) + Vext(Q, cp) (26) 

where Pnt(cp) and Vex'(R, cp) represent the torsional, or internal, and the orientational, 
or external contribution, respectively. 

The first term is determined exclusively by intramolecular interactions, and it will 
be taken from data available in the literature. 

The other contribution, Vex'(Q,cp), is calculated according to a model we have 
recently developed to describe the anisotropic field acting on molecules of arbitrary 
shape in uniaxial liquid crystal phases [7]. It is worth summarizing here the basic 
features of the treatment. It belongs to the so-called 'shape' models which, recognizing 
the repulsion intermolecular interactions as the dominant, although not the only 
orienting mechanism, try to relate the anisotropic torques experienced by the 
molecules with their steric arrangement. By analogy with the surface anchoring 
potential which determines the orientation of a macroscopic particle in a bulk nematic 
[35], we write the external potential as 

Vex'/kBT = E  dSP,(cos $ns,d), 

I S  

where the integral is defined over the S of the particle. P2(cos$ns,d) is a second 
order Legendre polynomial, $,,$,d, being the angle between the normal ns to the surface 
and the director d, which depends upon the surface element considered and the internal 
angle cp. The parameter E gives the strength of the orienting potential, taken as 
positive for normal calamitic nematics, so that the mesophase director tends to align 
parallel to the surface at each surface element. The surface of the molecule is defined by 
describing the molecule as an array of van der Waals overlapping spheres, centred at 
the atomic positions. In order to implement the calculation of the orienting potential, it 
is convenient to rewrite equation (27) by making use of the spherical harmonics 
addition theorem [36]. The following expression is derived 
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178 A. Ferrarini et al. 

where Cz,m are modified spherical harmonics and T2gm are the irreducible spherical 
components of a rank two, symmetric and traceless interaction tensor T, defined as 

The angles (fl, y )  and (6',4) give the orientation in the molecular frame of the director d 
and of the unit vector ns, respectively. 

The spherical irreducible components of the tensor T can be calculated at discrete 
values of the torsional angle cp, and the data are then interpolated by a Fourier series, to 
derive analytical expressions which can be efficiently implemented [ 191. 

3.2. Isomerization dynamics 
The kinetics of the isomerization process is investigated by making use again of the 

formalism of multivariate diffusion equations. In fact, since we assume the viscosity of 
the medium high enough to quench effectively the angular velocities, we can restrict 
ourselves to a Smoluchowski equation for the torsional (cp) and the orientational (Q) 
variables, whichare coupled by the orienting potential, as we have already seen, and by 
frictional effects. In fact, the frictional forces opposing both the overall molecular 
reorientations and the conformational transitions depend upon the actual molecular 
shape. The time evolution of the torsional-orientational distribution function P(R, cp, t )  
is then governed by the diffusion operator 

- f = V D(cp)P,,(Q, cp) VP;,'(Q, cp). (30) 

In this equation V denotes a suitable gradient operator acting on all variables, 
V =(M,, My,  M,, alacp), and P,, (R, cp) is the equilibrium distribution function, defined 
by 

If the torsional barrier is relatively low, up to a few kuT units, conformational 
transitions occur on the same time scale of the reorientational motions. The couplings 
between the two kinds ofmotions, determined by the conformation dependence of both 
the diffusion tensor and the orienting torques, must be taken into account, and 
therefore the full four dimensional diffusion equation given by equation (30) must be 
solved. 

When the torsional barriers are high, as is the case of BN for which values of 
67kJmol-' or more are assigned [34], the conformational process is strongly 
hindered and an effective time scale separation with the rotational motions occurs. 
Under this condition, a projection procedure on the time evolution operator can be 
performed, aimed to eliminate the fast variables in the calculation of the transition rate. 
The reduced diffusion equation in the slow coordinate cp is therefore 

and 
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Invited Lecture: Rotational and conformational dynamics in liquid crystals 179 

where D, is the diffusion coefficient for the torsional motion, and the distribution 
function P(cp) is given by 

P ( 9 )  = dflPeq(Q CP)* (34) s 
The reduced distribution P(cp) can be thought of as deriving from an effective potential 
Ipff(cp), defined as 

veff(rp) = - kBT In P(Cp). (35) 
As long as this potential exhibits high barriers, the kinetic parameters can be derived by 
asymptotic solutions of the diffusion equation [37,38]. So, in the case of a bistable 
potential characterized by two equivalent minima in the regions 0 < cp < n and 
n < cp < 2n, the rate constant for the interconversion process across the barrier at cp =o" 
is accurately calculated as 

where +cp, correspond to the location of potential minima. This result is a 
generalization of the Kramers expression [39] for the rate constants of activated 
processes. 

3.3. Numerical examples 
The projection procedure leading to equations (33) and (35) is valid only under the 

condition of timescale separation between internal and overall rotations. If this 
condition is not fulfilled, the kinetic constants calculated by equation (36) are in error, 
and also the definition of Veff may be misleading. In fact, if the rotational motions were 
slower than the conformational transitions, the rate determining step of the conform- 
ational process could not be simply identified as the passage across the barrier of the 
internal potential, but rather it should be associated to the approaching of the saddle 
point along the slow coordinate [20,21]. In any case, the calculation of the 
orientational order parameters requires the full distribution function P,,(sZ, cp). 

Having payed the proper attention to the timescale separation condition, it is 
interesting to notice that if we write 

Vff( cp) = P t (  cp) + 6 v a n y  cp) (37) 
with 6 Ifaniso the correction determined by the anisotropic environment, the evaluation 
of the last term does not require the knowledge of Vint. In fact, within the limits of 
validity of equation (26) we have 

6VaniS0(cp)= -kBTln dRexp [- Vext(R, cp)/k,T]. (38) s 
The corrections 6PniSo for biphenyl, 1,l'-binaphthyl and stilbene are displayed in figure 
4. The torsional angle has been taken as cp=o" for planar biphenyl, and for the trans 
configurations of BN and stilbene. The calculation of Vext has been performed with the 
methods described in section 3.1, by taking a value E of 0.1 which provides a 
reasonable ordering (Szz = 0.5 + 0.6) for the solutes in nematics. In the calculation of the 
interaction tensor T both carbon atoms and CH groups are described as spheres of 
radius equal to 2 A. The aromatic rings are taken as regular hexagons, with all bond 
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90 180 
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Figure 4. Corrections to the internal potential due to the nematic environment, calculated for 
biphenyl (full line), stilbene (dashed line) and binaphthyl (dotted line). The shape model 
discussed in the text has been used to evaluate the dependence upon the molecular 
conformation of the anisotropic potential. 

lengths equal to 1.395 A. For the sake of simplicity, the same value of 1.52 8, has been 
assigned in all cases to the bond involved in the rotational isomerization process. 

Figure 4 clearly shows that the planar configurations are stabilized for all three 
molecular systems. In the case of BN, the planar trans configuration corresponds to the 
transition state, the stable isomers having the naphthalene moieties almost per- 
pendicular to each other. As a consequence, the effect of the nematic order is to lower 
the barrier at the transition state, and therefore to accelerate the transition rate. The 
opposite conclusion is true for stilbene, where the stable forms are planar, and the 
transition state corresponds to an orthogonal arrangement of the phenyl rings. In this 
case, the stabilization of the planar forms implies an increase of the barrier height. The 
situation is slightly more complicated for biphenyl, where the isomerization involves 
the passage over barriers at cp = 0 and cp = 71/2 [ 191, and so the barrier at cp = 0 will be 
lowered, while the barrier at cp = 742 will increase. 

In any case, the largest effect is observed for the BN molecule, where a decrease of 
about 2 k,T units of the potential barrier is predicted. For geometrical reasons this 
molecule appears to be the most appropriate to investigate the kinetic effects of a 
nematic field. This is clearly not the case for biphenyl, which uniaxial phases tend to 
align with the para axis along the director, so that the latter can lie on both ring planes, 
irrespective of the torsional angle. This means that, at least for the energetically 
favoured molecular orientations, torsional and orientational potential are not 
coupled. The coupling is expected to become larger as the tilt angle between the para 
axis and the director increases, but such orientations are statistically less important. It 
is not so easy to predict how the binaphthyl molecule will be accommodated in a 
nematic phase but, because of its shape, its preferred orientation will markedly depend 
upon the value of the torsional angle. The relevance of the coupling can only be 
evaluated by numerical calculations. 
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0 90 180 
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Figure 5. Alteration of the torsional potential profile for a BN-like molecule, due to the nematic 
environment. The full and dotted line represent the torsional potential in the isotropic and 
nematic phase, respectively. In order to visualize the effect, equation (39) with A = 5, 
instead of the more realistic value A = 30, has been used. 

According to ab initio calculations [40] and molecular mechanics results [41], the 
ground state of binaphthyl is characterized by a torsional potential which is shallow in 
a wide range around the perpendicular conformation. In correspondence to the planar 
geometries there are two barriers, the higher one for the cis conformation, because of 
severe steric interactions. It follows that the stable conformers are predicted to be 
strongly non-planar, and a variety of values are possible for the twist angle, which is 
expected to be influenced by substituents which may be attached to the aromatic rings, 
and by specific interactions with the solvent. 

The form of the potential for BN has been expressed by the following trigonometric 
expansion 

V'"'(cp)/k,T = A( -0.75 cos cp + 1.5 cos 240 - 0.25 cos 340 + 0.36 cos 4cp)/2, (39) 
where A gives the height of the trans barrier. 

The modification of the torsional potential profile of BN due to the anisotropic 
torques exerted by a nematic environment is shown in figure 5, where the appropriate 
contribution 6 Vanis' has been added to the internal potential given by equation (39). 
The unrealistically low value for A of 5 has been adopted in order to visualize the effect, 
that otherwise would be barely perceptible if the more realistic value for A of 30, 
suggested by the experimental data of [34] were used. In both cases, however, the same 
increase by a factor of about e2 is obviously predicted for the isomerization rate. 

When the value for A of 30 is assumed for the potential barrier, the rate constant for 
the conformational transition in isotropic phase at temperature T (K) and viscosity q 
(cP) can be calculated after evaluating D, from the physical dimensions of the BN 
molecule [19], and it is found to be 

kiso % 8 x T/q (40) 
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In a nematic phase at the same temperature and viscosity, the rate constant is found to 
be faster by a factor of about 6,  which roughly corresponds to that expected factor. It is 
interesting to realize that the isomerization of BN in the ground state occurs at a rate 
which is 12+ 13 orders of magnitude slower than the corresponding photoisomeriz- 
ation process, which involves the first electronically excited state of the molecule [19]. 

The order parameters of BN in nematics have also been calculated, with the value 
for E of 0.1 k’ used to obtain the results shown in figures 4 and 5. By taking the z axis 
along the 1-1’ bond, and the y axis along the C, symmetry axis, the only symmetry 
element preserved by the conformational change, the non-vanishing ordering matrix 
elements are S,,= -0.27, S,,= -0.31, Szz=0,58 and S,.=O.lO. For the rigid 
configuration having the naphthalene rings perpendicular to each other, we would 
have S,, = S,, = - Szz/2 and S,, = 0. 

As a general conclusion, it appears that the isomerization kinetics may be 
significantly, but not drastically modified by the nematic ordering. The contradictory 
results for the cis stilbene isomerization probably reflect the modest effect expected in 
this case. Larger effects may result in more ordered phases, such as smectics. In fact, 
with an order parameter S,,=O8 an effective decrease of 6 k,T units is calculated for 
BN, implying an increase by a factor of 400 of the isomerization rate constant with 
respect to analogous isotropic conditions. 

4. Concluding remarks 
The molecular systems undergoing conformational changes, considered in $ 3, are 

non-polar in character and therefore a single particle approach for the description of 
the internal kinetics is well-justified. Were the conformational transitions accompanied 
by changes in polarity, inclusion of the coupling with solvent coordinates as described 
in $2 would be necessary. This situation generally arises in connection with 
photoisomerizations involving twisted intramolecular charge transfer (TICT) pro- 
cesses. A large amount of work has been devoted to study this aspect of the solvation 
dynamics in ordinary solvents [42], but surprisingly no attempt of exploiting in the 
same context the dynamical features of anisotropic solvents appears to have been 
carried out. A notable exception is the case of 9,9’-bianthryl (BA), whose spectroscopic 
behaviour has been investigated in micelles and lamellar phases [43]. BA provides a 
remarkable example of a molecular system, non-polar in the ground state, which 
exhibits an electron transfer in the excited state, promoted by polar solvents without 
significant conformational changes [44]. In fact, the two anthracene moieties assume a 
nearly orthogonal configuration, in both the ground and excited state of BA, in order to 
minimize the steric effects. In non-polar solvents, the absorption and emission spectra 
are therefore very similar to those of anthracene itself. Polar media, however, stabilize 
the charge transfer (CT) states obtained by excitation of an electron from the highest 
occupied molecular orbital of a ring to the lowest non-occupied orbital of the other, 
and so the fluorescence spectra exhibit a marked red-shift. Although the two CT 
structures of opposite polarity are degenerate in the isolated BA molecule, instanta- 
neous polarization fluctuations break the symmetry inducing an effective electron 
transfer. The kinetics of the electron transfer, and of the consequent time dependent 
Stokes shift of the fluorescence emission, is therefore controlled by the solvent 
polarization fluctuations. 

If BA is dissolved in microetherogeneous media, such as micelle samples, because of 
the hydrophobic character of the aromatic molecules they are expected to be 
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preferentially located in the micellar cores. Molecules excited by a laser pump can then 
diffuse to the water interface, where the increase of the polarity induces the electron 
transfer. Under these conditions, the bathochromic shift of the fluorescence emission 
occurs on a timescale which is determined by the translation diffusion of the BA across 
the micelle dimensions. Such a mechanism for the time dependent Stokes shift is 
reminiscent of a spin relaxation effect caused in smectic A phases by translations across 
regions of non-uniform ordering [45], and therefore it can be analysed in a similar way. 

This work has been supported by the Italian Ministry of the University and the 
Scientific and Technological Research, and in part by the National Research Council 
through its Centro Studi sugli Stati Molecolari. The authors acknowledge G. J. Moro 
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